

Emission Monitoring Report
March 2019

CERTIFICATION

The field monitoring for this survey was conducted by certified stack test technicians as required by the British Columbia Ministry of Environment (BC MOE) Field Sampling Manual.

The field crew consisted of:

Mr. S. Harrington (certified) and Mr. C. Lanfranco (certified).

The report was prepared by Mr. C. Lanfranco using reporting principles and guidelines generally acceptable to Metro Vancouver (MV).

The field crew and A. Lanfranco and Associates Inc. certify that the test methods used were BC MOE/MV approved reference methods for the parameters investigated.

Report reviewed by:

Mark Lanfranco, CST

President | Owner

Table of Contents

SUMN	MARY	1
1 IN	ITRODUCTION	2
2 M	IETHODOLOGY	3
2.1	Sampling and Analytical Methods	3
2.2	Method Modifications	7
2.3	Calculations	8
2.	3.1 Parameter Concentration Calculations	8
2.	3.2 Isokinetic Variation Calculations	10
2.	3.3 Volumetric Flowrate Calculations	12
3 P	ROCESS DESCRIPTIONS	13
3.1	Rubber Buffing Room	13
3.2	Grit Blast Booth	13
3.3	Welding Station #19	13
4 D	ETAILED TEST RESULTS	14
5 D	ISCUSSION	18
	APPENDICES	
	Appendix 1 - Computer Outputs of Measured and Calculated Data	
	Appendix 2 - Analytical Data	
	Appendix 3 - Field Data Sheets and Process Data	
	Appendix 4 - Source Photos	
	Appendix 5 - Calibration Data and Certifications	

SUMMARY

The following table shows the emission results from three sources located at Weir Canada's manufacturing facility in Surrey, B.C.

SUMMARY TABLE: COMPARISON OF EMISSION TEST RESULTS

Parameter	Rubber Buffing	Grit Booth	Welding Station #19
Test Date	March.15, 2019	March.14, 2019	March.14, 2019
Particulate (mg/m³)	1.57	0.99	1.64
Particulate (kg/hr)	0.066	0.020	0.001
Detailed Trace Metals Emissions Sum of Class I (mg/m3)	0.0002	0.0002	0.0002
Sum of Class II (mg/m3)	0.0019	0.0032	0.0031
Sum of Class III (mg/m3)	0.0038	0.0049	0.0097

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry).

Note – Classes are as per the Metro Vancouver Industrial Solid Waste and Resource Management Plan. Detailed Metals results can be found in Tables 1-3.

1 INTRODUCTION

Weir Canada Inc., commissioned A. Lanfranco and Associates Inc., of Surrey, B.C, to conduct an emissions monitoring survey on three sources associated with their manufacturing process. This report documents the results found. The parameters investigated during this survey include particulate matter, trace metals and volumetric flowrate. The sampling program consisted of, but was not limited to, the planning, execution, analysis, and reporting of three emission sources located at 18933, 43a Ave, Surrey, B.C.

The individual sources that were monitored for compliance are identified as the Welding Station #19, Grit Blast Booth and Rubber Buffing station. Sampling was conducted on March 14 and 15, 2019.

2 METHODOLOGY

All services provided by A. Lanfranco and Associates Inc. were conducted in accordance with approved reference methods as issued by:

- Metro Vancouver (MV)
- BC Ministry of Environment & Climate Change Strategy (BC MOE)
- Environment Canada (EC)
- US Environmental Protection Agency (EPA)

2.1 Sampling and Analytical Methods

The following table lists the test methods used for the different parameters measured. The subsequent paragraphs briefly describe each method.

Table 1: Reference Methods

<u>Parameter</u>	Reference Method
Sample and Velocity traverse points	EPS 1/RM/8 A Determination of Sampling Site and Traverse
	Points
Velocity and flowrate	EPS 1/RM/8 B Determination of Stack Gas Velocity and
	Volumetric Flow Rate (Type S Pitot Tube)
Gas molecular weight (O ₂ /CO ₂)	EPS 1/RM/8 C Determination of Molecular Weight by Gas
	Analysis
Flue gas Moisture	EPS 1/RM/8 D Determination of Moisture Content
Particulate Matter	EPS 1/RM/8 E Determination of Particulate Matter Emissions
	from Stationary Sources
Trace Metals	EPA Method 29 Modified

EPS 1/RM/8 Method A

Sampling Site and Traverse Points

Supporting: EPA Method 1

Primary:

This method is designed to aid in the representative measurement of pollutant emissions and/or total volumetric flow rate from a stationary source. A measurement site where the effluent stream is flowing in a known direction is selected, and the cross-section of the stack is divided into a number of equal areas. Traverse points are then located within each of these equal areas.

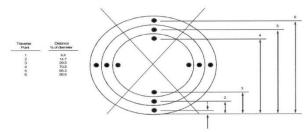
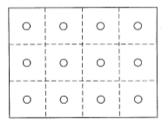



Figure 1. Example showing circular stack cross section divided into 12 equal areas, with location of traverse points.

Figure 1A. Example showing rectangular stack cross section divided into 12 equal areas, with location of traverse points

Stack Gas Velocity and Volumetric Flow Rate

The average gas velocity in a stack or duct is determined from the gas density and from the measurement of velocity pressure with an Stype pitot tube. A standard pitot tube may be used where plugging of the tube openings due to particulate matter and/or moisture is not likely to occur. Stack gas volumetric flow rate is determined from measurements of stack gas velocity, temperature, absolute pressure, dry gas composition, moisture content, and stack diameter.

Primary: EPS 1/RM/8 Method B Supporting: EPA Method 2

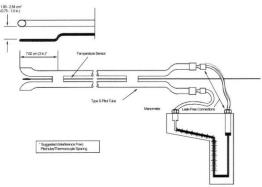


Figure 2. Type S Pitot Tube Manometer Assembly

Molecular Weight by Gas Analysis

Primary:

EPS 1/RM/8 Method C

Supporting: EPA Method 3

An integrated or grab sample is extracted from a single point in the gas stream and analyzed for its components using a Fyrite analyzer, a gas chromatograph, or calibrated continuous analyzers.

Moisture Content

Primary:

EPS 1/RM/8 Method D

Supporting: EPA Method 4

A gas sample is extracted from a single point in the enclosed gas stream being sampled. The moisture is condensed, and its weight measured. This weight, together with the volume of gas sampled, enables the stack gas moisture content to be calculated.

Particulate Matter

Primary:

EPS 1/RM/8 Method E

Supporting: EPA Method 5

Particulate matter is withdrawn isokinetically from a number of sampling or traverse points in an enclosed gas stream. The particulate sample is collected in the nozzle, probe, and on a glass fibre filter, all maintained at a temperature of 120 ± 14°C or such other temperature as is necessary to prevent blinding of the filter from condensation. The particulate weight is determined gravimetrically after removal of uncombined water. Simultaneous determinations of the gas stream moisture content, velocity, temperature, and molecular weight allow calculations of the particulate concentration and the particulate mass emission or release rate to be made.

<u>Trace Metal</u> Primary: EPA Method 29 (modified)

This method is used in conjunction with the above Method 5. A stack sample is withdrawn isokinetically from the source. Particulate emissions are collected in the probe and on a heated filter, and gaseous emissions are then collected in an aqueous acidic solution of hydrogen peroxide (analyzed for all metals excluding Hg). The trace metals are analyzed with inductively coupled argon plasma emission spectroscopy (ICAP), atomic absorption spectroscopy (AAS) and graphite furnace atomic absorption spectroscopy (GFAAS). Figure 3 displays the sample train and its configuration.

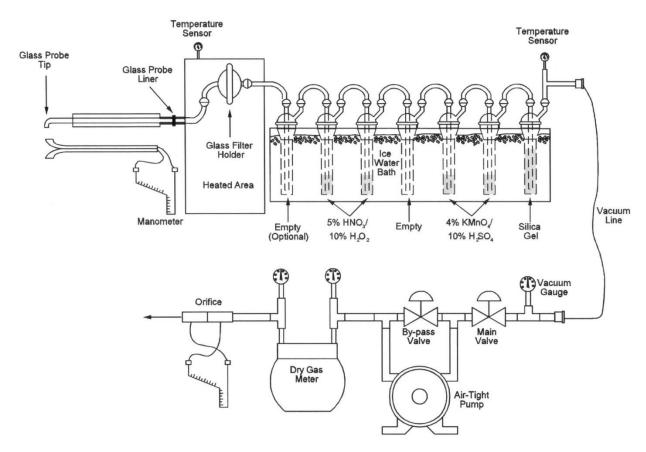


Figure 3. Particulate / Trace Metals Sampling Train

Note: Impingers #5 and #6 for Mercury capture were excluded from the sampling train

2.2 Method Modifications

Three minor method modifications were instituted for this work.

- 1. Reagent blanks for metals trains were made to the same volumes as all samples. In other words, exactly 100 ml of the various reagents used to recover samples was NOT done, as some sample components (probe washing for example) required more than 100 ml to adequately clean and rinse the probe. Instead, sample recovery was conducted with however much rinsing was deemed adequate. In the laboratory, the blanks and samples were made up with the appropriate reagent so that all samples and blanks were the same volume.
- 2. Filter and residue weighing were not conducted with the six-hour interval technique. Instead the sample filters and beakers were conditioned with cooling and desiccation and then weighed on two separate laboratory scales after 24 hours. Duplicate or triplicate Blank samples were carried through the gravimetric analysis, and the sample results were adjusted with the Blank data to determine the net filter and probe wash residue weight gain. This is the Environment Canada approved modified approach for weighing probe wash residue.
- 3. For the purposes of calculating a result, all parameters were given the value of ½ the detection limit when the analysis yielded 'non-detect' results.

All results are expressed using the metric system and corrected to standard conditions of 20 °C and 101.325 kPa, dry gas (unless otherwise noted).

2.3 Calculations

The following sections show the equations and define the variables that were used for this survey. The equations are organized in three sections. Equations 1-10 were used to calculate parameter concentration at standard conditions on a dry basis. Equations 12-26 were used to sample within the $100 \pm 10\%$ isokinetic variation and to confirm that sampling meets this isokinetic variation threshold. Equations 27-29 were used to calculate the volumetric flowrate of the stack flue gas.

2.3.1 Parameter Concentration Calculations

$$c = \frac{m}{V_{std}}$$
 Equation 1

$$m_{part} = m_{filter} + m_{pw}$$
 Equation 2

$$m_i = m_{ana,i} - m_{blank}$$
 Equation 3

$$V_{std} = \frac{V_{std(imp)}}{35.315}$$
 Equation 4

$$V_{std(imp)} = \frac{V_{samp} \times y \times P_m \times (T_{std} + 459.67)}{P_{std} \times (T_{m(ave)} + 459.67)}$$
Equation 5

$$V_{samp} = V_{final} - V_{init}$$
 Equation 6

$$P_m = P_B + \frac{\Delta H_{ave}}{13.6}$$
 Equation 7

$$\Delta H_{ave} = \frac{1}{n} \sum_{i=1}^{n} \Delta H_{i(act)}$$
, where $n = the number of points$ Equation 8

$$OC = \frac{20.9 - \%O_{2c}}{20.9 - \%O_{2m}}$$
 Equation 9

$$%O_{2m} = \frac{1}{n} \sum_{i=1}^{n} %O_{2i}$$
, where $n = the number of O_2$ measurements Equation 10

Where.

c = Parameter concentration

m = Parameter mass

 m_i = Net analytical mass (mg, ng, or μ g) $m_{ana,i}$ = Analytical mass (mg, ng, or μ g) m_{blank} = Blank analytical mass (mg, ng, or μ g)

 m_{part} = Total particulate mass (mg)

 m_{filter} = Net particulate gain from filter (mg)

 m_{pw} = Net particulate gain from probe wash (mg) $V_{std(imp)}$ = Sample volume at standard conditions (ft³) V_{samp} = Sample volume at actual conditions (ft³)

 V_{final} = Final gas meter reading (ft³) V_{init} = Initial gas meter reading (ft³) T_{std} = Standard temperature (68 °F) T_m = Gas meter temperature (°F)

 $T_{m(ave)}$ = Average gas meter temperature (°F) P_m = Absolute meter pressure (inches of Hg) P_B = Barometric pressure (inches of Hg)

 P_{std} = Standard barometric pressure (29.92 inches of Hg)

 ΔH_{ave} = Average of individual point orifice pressures (inches of H_2O) $\Delta H_{i(act)}$ = Individual recorded point orifice pressures (inches of H_2O)

OC = Oxygen correction factor (dimensionless)

 $\%O_{2c}$ = Oxygen concentration to correct to (% dry basis) $\%O_{2i}$ = Individual oxygen measurements (% dry basis)

 $\%O_{2m}$ = Average measured stack gas oxygen concentration (% dry basis)

Equation 1 is the general concentration calculation used for all parameters. The mass, m, is the net analytic mass for the given parameter. For particulate, m is the sum of the mass contributed from probe washing and filter particulate.

For trace metals, m is the blank corrected (Equation 3) analytical result (Appendix 1) for each metals species and run. If the analytical result was below the detection limit, half of the detection limit (DL) was used for m in Equation 1.

2.3.2 Isokinetic Variation Calculations

$$\Delta H_i = \frac{2.62 \times 10^7 \times c_p \times A_n \times (1 - B_{wo}) \times M_D \times (T_m + 459.67) \times \Delta p_i}{k_o \times M_w \times (T_{Stk} + 459.67)}$$
 Equation 11

$$R_{m} = 85.49 \times c_{p} \times \sqrt{\Delta p_{i}} \times \sqrt{\frac{(T_{stk_{i}} + 459.67)}{M_{w} \times P_{B}}} \times 60 \times A_{n} \times \frac{(T_{m_{i}} + 459.67) \times (1 - B_{wo})}{(T_{stk_{i}} + 459.67) \times y}$$
 Equation 12

$$A_n = \pi \left(\frac{d_n}{24}\right)^2$$
 Equation 13

$$M_w = M_D \times (1 - B_{wo}) + 18 \times B_{wo}$$
 Equation 14

$$M_D = 0.44 \times \% CO_2 + 0.32 \times \% O_2 + 0.28 \times (100 - \% CO_2 - \% O_2)$$
 Equation 15

$$T_{Stk} = \frac{1}{n} \sum_{i=1}^{n} T_{Stk_i}$$
, where $n = the number of points$

$$B_{wo} = \frac{V_{cond}}{V_{cond} + V_{std(imp)}}$$
 Equation 17

$$V_{cond} = 0.04707 \times V_{gain}$$
 Equation 18

$$Iso = \frac{1}{n} \sum_{i=1}^{n} Iso_i, where n = the number of points$$
 Equation 19

$$Iso_i = \frac{v_{nzi}}{v_i}$$
 Equation 20

$$v_i = 85.49 \times c_p \times \sqrt{\Delta p_i} \times \sqrt{\frac{\left(T_{Stk_i} + 459.67\right)}{\left(P_{Stk} \times M_W\right)}}$$
 Equation 21

$$v_{nzi} = \frac{(V_i - V_{i-1}) \times y \times (T_{Stk_i} + 459.67) \times (P_B + \frac{\Delta H_{i(act)}}{13.6})}{A_n \times t_i \times 60 \times (T_{m(i)} + 459.67) \times P_{stk} \times (1 - B_{wo})}$$
 Equation 22

$$P_{stk} = P_B + \frac{P_g}{13.6}$$
 Equation 23

$$v_{stk} = \frac{1}{n} \sum_{i=1}^{n} v_i$$
 , where $n = the \ number \ of \ points$

$$v_{nz} = \frac{1}{n} \sum_{i=1}^{n} v_{nzi}$$
, where $n =$ the number of points

Where,

 $A_n = Nozzle area (ft^2)$

 d_n = Diameter of nozzle (inches) c_p = Pitot coefficient (dimensionless)

 Δp_i = Individual point differential pressures (inches of H_2O)

 T_{Stk} = Average flue gas temperature (°F), second subscript i, indicates individual

point measurements

 T_m = Average gas meter temperature (°F), second subscript i, indicates

individual point measurements

k_o = Gas meter calibration constant (dimensionless) y = Gas meter calibration factor (dimensionless)

 $\Delta H_{i(act)}$ = Calculated individual point orifice pressures (inches of H₂O)

 P_g = Stack Static pressure (inches of H_2O) P_{stk} = Absolute stack pressure (inches of H_3) M_W = Wet gas molecular weight (g/gmol) M_D = Dry gas molecular weight (g/gmol)

*%CO*₂ = Stack gas carbon dioxide concentration (% dry basis)

%02 = Stack gas oxygen concentration (% dry basis) B_{wo} = Stack gas water vapour, proportion by volume V_i = Gas meter reading at individual point(ft^3)

 t_i = Sample time at each point (minutes)

 V_{cond} = Total volume of water vapor collected, corrected to standard conditions

(ft³)

 V_{gain} = Condensate gain of impinger contents (mL) P_{std} = Standard pressure (29.92 inches of Hg)

 v_{stk} = Average flue gas velocity (ft/sec)

 v_i = Individual point flue gas velocity (ft/sec)

 v_{nz} = Average velocity at nozzle(ft/sec)

 v_{nzi} = Individual point velocity at nozzle(ft/sec) Iso_i = Individual point isokinetic variation (%)

Iso = Average isokinetic variation (%) R_m = Isokinetic sampling rate (ft^3 /min)

2.3.3 Volumetric Flowrate Calculations

$$Q_S = Q_A \times \frac{(T_{Std} + 459.67)}{(T_{Stk} + 459.67)} \times \frac{P_{Stk}}{P_{Std}}$$

Equation 26

$$Q_A = \frac{v_{stk} \times 60 \times A_{stk}}{35.315}$$

Equation 27

$$A_{stk} = \pi \left(\frac{d}{24}\right)^2$$

Equation 28

Where,

 $Q_A = Actual flowrate (Am^3/min)$

 Q_S = Flowrate (m^3 /min) at standard conditions on a dry basis

 A_{stk} = Area of stack (ft²)

d = Diameter of stack (inches)

3 PROCESS DESCRIPTIONS

3.1 Rubber Buffing Room - Emission Source 07

Rubber buffing and polishing area with filtered side draft hoods providing 90% control and filtered collection arms providing 99% control.

On March 15, 2019 the work undertaken during monitoring was: 32" x 30" pipe reducers Flange x DOL (x2) VN-72 1-3/8"

Upstream Diameters: 0.5 Downstream Diameters: 2.7

3.2 Grit Blast Booth – Emission Source 08

Innovative Blast Technologies, pulse cleaning dust collector consisting of 25 cartridges with particulate matter filter.

On March 14, 2019 the work undertaken during monitoring was: 24" reducer x 20" long Wear cones 37" x 37" x 13" (x12)

Upstream Diameters: 0.4 Downstream Diameters: 0.8

3.3 Welding Station #19 - Emission Source 09

19 welding stations connected to individual Nederman Modular Filter Systems fitted with particle filters.

On March 14, 2019 the work undertaken during monitoring was: 30" diameter pipe (3 passes) – 282" of weld surface WPS STT.FC.03 flux core wire 1/16" 24V 190 IPM wire feed

Upstream Diameters: > 2 Downstream Diameters: > 8

Note – Emission Source numbers are as per Metro Vancouver Air Permit GVA1081

4 DETAILED TEST RESULTS

The results of stack emissions were calculated using a "STACK" computer program developed by A. Lanfranco and Associates for BC MOE requirements.

Tables 1-4 present the detailed results of all emissions parameters tested for each of the units. Additional data and the computer outputs can be found in the accompanying Appendices.

TABLE 1: RUBBER BUFFING - SUMMARY OF EMISSION TEST RESULTS

Parameter	Run 1	
Test Date - Particulate/Metals	15-Mar-19	
Test Time - Particulate/Metals	09:43-10:47	
Duration - Minutes	60	
Stack Temperature (°C)	24	
Average Gas Velocity (m/s)	20.2	
Dry Flow Rate (m ³ /min)	706	
Moisture (Vol. %)	0.7	
Oxygen (Vol. %)(dry basis)	21.0	
Carbon Dioxide (Vol. %)(dry basis)	0.0	
Particulate (mg/m ³)	1.57	
Isokinetic Variation (%)	101	
Trace Metals		
Pb (mg/m3)	0.00123	
Sb (mg/m3)	0.00046	
Cu (mg/m3)	0.00043	
Mn (mg/m3)	0.00003	
V (mg/m3)	0.00006	
Zn (mg/m3)	0.00129	
As (mg/m3)	0.00011	
Cr (mg/m3)	0.00033	
Co (mg/m3)	0.00003	
Ni (mg/m3)	0.00058	
Se (mg/m3)	0.00015	
Te (mg/m3)	0.00107	
TI (mg/m3)	0.00015	
Cd (mg/m3)	0.00002	

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry)

TABLE 2: GRIT BLAST BOOTH - SUMMARY OF EMISSION TEST RESULTS

Parameter	Run 1	
Test Date - Particulate/Metals	14-Mar-19	
Test Time - Particulate/Metals	13:40-14:42	
Duration - Minutes	60	
Stack Temperature (°C)	26	
Average Gas Velocity (m/s)	11.4	
Dry Flow Rate (m³/min)	339	
Moisture (Vol. %)	0.7	
Oxygen (Vol. %)(dry basis)	21.0	
Carbon Dioxide (Vol. %)(dry basis)	0.0	
Particulate (mg/m³)	0.99	
Isokinetic Variation (%)	101	
Trace Metals		
Pb (mg/m3)	0.00073	
Sb (mg/m3)	0.00055	
Cu (mg/m3)	0.00055	
Mn (mg/m3)	0.00022	
V (mg/m3)	0.00007	
Zn (mg/m3)	0.00080	
As (mg/m3)	0.00013	
Cr (mg/m3)	0.00193	
Co (mg/m3)	0.00015	
Ni (mg/m3)	0.00105	
Se (mg/m3)	0.00058	
Te (mg/m3)	0.00128	
TI (mg/m3)	0.00018	
Cd (mg/m3)	0.00002	

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry)

TABLE 3: WELDING STATION #19 - SUMMARY OF EMISSION TEST RESULTS

Parameter	Run 1	
Test Date - Particulate/Metals	14-Mar-19	
Test Time - Particulate/Metals	10:47-11:49	
Duration - Minutes	60	
Stack Temperature (°C)	22	
Average Gas Velocity (m/s)	6.6	
Dry Flow Rate (m³/min)	10	
Moisture (Vol. %)	0.7	
Oxygen (Vol. %)(dry basis)	21.0	
Carbon Dioxide (Vol. %)(dry basis)	0.0	
Particulate (mg/m³)	1.64	
Isokinetic Variation (%)	100	
Trace Metals		
Pb	0.00140	
Sb	0.00052	
Cu	0.00029	
Mn	0.00161	
V	0.00007	
Zn	0.00091	
As	0.00028	
Cr	0.00485	
Co	0.00003	
Ni	0.00136	
Se	0.00017	
Te	0.00122	
П	0.00017	
Cd	0.00002	

All data is corrected to standard conditions (S) of 20 °C, 101.325 kPa (dry)

TABLE 4 - GRAVIMETRIC ANALYSIS

Filter Collection:

	Initial (grams)	Final (grams)	Net Difference (grams)	Blank Adjusted (grams)
	(grains)	(grains)	(grains)	(grains)
Rubber Buffing Blank	0.4719	0.4719	0.0000	ND
Rubber Buffing Run 1	0.4733	0.4733	0.0000	
Grit Booth Blank	0.4719	0.4719	0.0000	ND
Grit Booth Run 1	0.4706	0.4706	0.0000	
Welding St. Blank	0.4719	0.4719	0.0000	ND
Welding St. Run 1	0.4784	0.4784	0.0000	

Front Half Washings:

	Initial (grams)	Final (grams)	Net Difference (grams)	Blank Adjusted (grams)
	(9.5)	(granne)	(9.5)	(greater)
Rubber Buffing Blank	109.5900	109.5896	-0.0004	0.0025
Rubber Buffing Run 1	119.4815	119.4836	0.0021	
Grit Booth Blank	109.5900	109.5896	-0.0004	0.0013
Grit Booth Run 1	98.5213	98.5222	0.0009	
Welding St. Blank	109.5900	109.5896	-0.0004	0.0023
Welding St. Run 1	112.9823	112.9842	0.0019	

5 DISCUSSION

Weir Canada Inc. requested that A. Lanfranco and Associates Inc. perform one emission test run of three emission sources for various parameters to determine a baseline of actual facility emissions.

While there are no existing regulations for direct comparison of emission test results, in 2010 Metro Vancouver published the Industrial Solid Waste and Resource Management Plan (ISWRMP), focusing on the operation of their Waste-to-Energy Facility. Trace Metals were categorized into three groups. Class I: total of Cadmium, Mercury (not applicable) and Thallium, Class II: total of Arsenic, Cobalt, Nickel, Selenium and Tellurium, Class III: total of Antimony, Lead, Chromium, Copper, Manganese, Vanadium and Zinc. The limits are Class I: 0.2 mg/Sm³, Class II: 1 mg/Sm³ and Class 3: 5 mg/Sm³. The emissions from the three sources measured at Weir Canada are approximately 1000 times less than the corresponding limits.

Particulate Matter emissions were low compared to general emission limits across various industries; however, they are above the limits stipulated in GVA 1081.

The particulate mass gathered from all three sources was in the rinsing of the sample nozzle, probe liner and filter housing (top). The gravimetric analysis of the sample filter was non-detectable for all three sources.

Sampling was conducted in accordance with their respective reference methods (EPA 29 except as discussed) and passed all appropriate quality assurance and quality control criteria.

All sampling was conducted/supervised by certified emission testing personnel, using calibrated source sampling equipment and quality controlled reagents.

Each source was measured during normal operating conditions such that the results are representative of day to day activities at Weir Canada.

There were no problems associated with the sampling and the results are therefore reported with a high level of confidence.

APPENDIX 1

COMPUTER OUTPUTS OF MEASURED AND CALCULATED DATA

Client: Weir Canada Date: 15-Mar-19

Jobsite: Weir - Surrey, BC Run: 1 - Particulate / Metals

Source: Rubber Buffing Room Run Time: 09:43-10:47

Concentrations:

Particulate 1.57 mg/dscm 0.00068 gr/dscf

1.53 mg/Acm 0.00067 gr/Acf

Emission Rates:

Particulate 0.066 Kg/hr 0.146 lb/hr

Flue Gas Characteristics:

Flow 706 dscm/min 24944 dscf/min

 11.77 dscm/sec
 416 dscf/sec

 721 Acm/min
 25467 Acf/min

Velocity 20.162 m/sec 66.15 f/sec

Temperature 23.7 oC 74.7 oF

Moisture 0.7 %

Gas Analysis 21.0 % O2

0.0 % CO2

28.840 Mol. Wt (g/gmole) Dry 28.765 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.6291 dscm 57.533 dscf

Sample Time 60.0 minutes Isokineticity 101.4 %

* **Standard Conditions:** Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Weir Canada Date: 15-Mar-19

Jobsite:Weir - Surrey, BCRun:1 - Particulate / Metals

Source: Rubber Buffing Room Run Time: 09:43-10:47

Control Unit (Y)	1.0232		Collection:		Gas Analys	sis (Vol. %):	Condensate Collection:	
Nozzle Diameter (in.)	0.2112		Filter (grams) 0.00005		CO2	O2	Impinger 1	-30.0
Pitot Factor	0.8349		Washings (grams) 0.00250	Traverse 1	0.00	21.00	Impinger 2	27.0
Baro. Press. (in. Hg)	30.25			Traverse 2	0.00	21.00	Impinger 3	3.0
Static Press. (in. H20)	-5.00		Total (grams) 0.00255				Impinger 4	0.0
Stack Height (ft)	30						Impinger 5	0.0
Stack Dimensions (in.)	42.00	22					Impinger 6	0.0
Stack Area (sq.ft.)	6.417				0.00	21.00	Gel	8.5
Minutes Per Reading	2.5							
Minutes Per Point	2.5						Gain (grams)	8.5

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter		Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
raverse 1	0.0	733.920								
1	2.5	736.860	2.30	4.37	62	62	5	75	1.5	101.9
2	5.0	739.670	2.10	3.99	62	62	5	74	4.1	101.8
3	7.5	742.330	1.90	3.61	63	63	5	75	9.3	101.1
4	10.0	744.710	1.50	2.85	63	63	5	75	13.8	101.6
5	12.5	746.660	1.00	1.91	64	64	4	74	17.7	101.5
6	15.0	748.610	1.00	1.91	64	64	4	74	20.7	101.5
Fraverse 2	0.0	748.610								
1	2.5		2.10	4.00	65	65	5	75	1.5	101.3
2	5.0	753.900	1.60	3.06	66	66	4	74	4.1	101.9
3	7.5	756.130	1.30	2.50	66	66	4	74	9.3	101.5
4	10.0	758.070	0.98	1.88	67	67	4	74	13.8	101.4
5	12.5	759.880	0.85	1.63	68	68	4	75	17.7	101.4
6	15.0	761.710	0.87	1.67	68	68	4	75	20.7	101.3
	10.0	101.710	0.07	1.07	100	100		110	20.7	1101.0
Traverse 3	0.0	761.710								
1	2.5	764.370	1.85	3.55	68	68	4	75	1.5	101.5
2	5.0	766.700	1.40	2.70	70	70	4	75	4.1	101.6
3	7.5	768.850	1.20	2.31	71	71	4	75	9.3	101.0
4	10.0	770.800	0.98	1.90	71	71	4	74	13.8	101.1
5	12.5	772.750	0.98	1.90	72	72	4	74	17.7	100.9
6	15.0	774.710	0.98	1.90	72	72	4	75	20.7	101.6
Traverse 4	0.0	774.710								
1	2.5		2.10	4.06	72	72	5	75	1.5	102.1
2	5.0	780.150	1.70	3.30	74	74	5	75	4.1	101.1
3	7.5	782.460	1.35	2.63	76	76	4	75	9.3	101.4
4	10.0	784.810	1.40	2.73	76	76	4	75	13.8	101.3
5	12.5	786.990	1.20	2.34	77	77	4	75	17.7	101.2
6	15.0	789.270	1.30	2.54	78	78	4	75	20.7	101.6
0	10.0	103.210	1.50	2.04	10	10	7	13	20.1	101.0
Average:			1.414	2.718	69.0	69.0	4.3	74.7		101.4

Client: Weir Canada Date: 14-Mar-19

Jobsite: Weir - Surrey, BC Run: 1 - Particulate / Metals

Source: Grit Blast Booth Run Time: 13:40-14:42

Concentrations:

Particulate 1.0 mg/dscm 0.0004 gr/dscf

1.0 mg/Acm 0.0004 gr/Acf

Emission Rates:

Particulate 0.020 Kg/hr 0.044 lb/hr

Flue Gas Characteristics:

Flow 339 dscm/min 11981 dscf/min

 5.65 dscm/sec
 200 dscf/sec

 345 Acm/min
 12180 Acf/min

Velocity 11.394 m/sec 37.38 f/sec

Temperature 25.9 oC 78.5 oF

Moisture 0.7 %

Gas Analysis 21.0 % O2

0.0 % CO2

28.840 Mol. Wt (g/gmole) Dry 28.760 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.3684 dscm 48.325 dscf

Sample Time 60.0 minutes Isokineticity 101.0 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Weir Canada Date: 14-Mar-19

Jobsite:Weir - Surrey, BCRun:1 - Particulate / Metals

Source: Grit Blast Booth Run Time: 13:40-14:42

Control Unit (Y)	1.0232		Collection:		Gas Analysis (Vol. %):		Condensate Collection:		
Nozzle Diameter (in.)	0.2575		Filter (grams) 0.00005		CO2	O2	Impir	nger 1 -	-10.0
Pitot Factor	0.8349		Washings (grams) 0.00130	Traverse 1	0.00	21.00	Impir	nger 2	8.0
Baro. Press. (in. Hg)	30.25			Traverse 2	0.00	21.00	Impir	nger 3	2.0
Static Press. (in. H20)	-0.14		Total (grams) 0.00135				Impir	nger 4	0.0
Stack Height (ft)	30						Impir	nger 5	0.0
Stack Diameter (in.)	23.00	34					Impir	nger 6	0.0
Stack Area (sq.ft.)	5.431							Gel	7.6
Minutes Per Reading	2.5				0.00	21.00	Gain (g	rams)	7.6

					Dry Gas	Temperature		Stack	Wall	
Traverse /	Time	Dry Gas Meter	Pitot ^P	Orifice ^H	Inlet	Outlet	Vacuum	Temp.	Dist.	Isokin.
Point	(min.)	(ft3)	(in. H2O)	(in. H2O)	(oF)	(oF)	(in. Hg.)	(oF)	(in.)	(%)
raverse 1	0.0	687.510	Ì '					1	Ì	<u> </u>
1	2.5	689.410	0.44	1.85	62	62	4	77	1.5	100.3
2	5.0	691.460	0.51	2.12	62	62	4	78	5.6	100.7
3	7.5	693.520	0.52	2.17	62	62	4	78	10.2	100.3
4	10.0	695.580	0.51	2.12	62	62	4	79	14.0	101.3
5	12.5	697.540	0.47	1.93	62	62	4	78	18.9	100.3
6	15.0	699.400	0.42	1.75	62	62	4	79	21.7	100.7
raverse 2	0.0	699.400						-		
1	2.5		0.46	1.91	62	62	4	79	1.5	100.4
2	5.0		0.46	1.92	63	63	4	79	5.6	100.7
3	7.5		0.43	1.80	63	63	4	79	10.2	101.5
4	10.0		0.43	1.80	63	63	4	79	14.0	101.5
5	12.5		0.46	1.92	63	63	4	79	18.9	101.3
6	15.0		0.46	1.92	64	64	4	78	21.7	101.0
Fraverse 3	0.0	711.010								
1	2.5		0.36	1.51	64	64	3	78	1.5	101.2
2	5.0		0.38	1.60	65	65	3	79	5.6	101.3
3	7.5		0.37	1.55	64	64	4	78	10.2	101.0
4	10.0		0.40	1.68	65	65	4	78	14.0	101.4
5	12.5		0.43	1.80	66	66	4	79	18.9	101.4
6	15.0		0.43	1.81	66	66	4	78	21.7	100.8
raverse 4	0.0	721.950								
1	2.5		0.46	1.93	66	66	4	78	1.5	101.1
2	5.0		0.46	1.93	67	67	4	79	5.6	101.5
3	7.5	727.920	0.48	2.02	67	67	4	79	10.2	101.4
4	10.0		0.44	1.85	67	67	4	79	14.0	100.6
5	12.5		0.45	1.89	67	67	4	79	18.9	100.6
6	15.0	733.680	0.43	1.81	67	67	4	79	21.7	100.7
Average:			0.444	1.858	64.2	64.2	3.9	78.5		101.0

Minutes Per Point

2.5

Client: Weir Canada Date: 14-Mar-19

Jobsite: Weir - Surrey, BC Run: 1 - Particulate / Metals

Source: Welding Station #19 Run Time: 10:47-11:49

Concentrations:

Particulate 1.64 mg/dscm 0.00072 gr/dscf

1.64 mg/Acm 0.00072 gr/Acf

Emission Rates:

Particulate 0.001 Kg/hr 0.002 lb/hr

Flue Gas Characteristics:

Flow 10 dscm/min 348 dscf/min

0.16 dscm/sec 6 dscf/sec 10 Acm/min 349 Acf/min

Velocity 6.629 m/sec 21.75 f/sec

Temperature 21.6 oC 70.9 oF

Moisture 0.7 %

Gas Analysis 21.0 % O2

0.0 % CO2

28.840 Mol. Wt (g/gmole) Dry 28.760 Mol. Wt (g/gmole) Wet

Sample Parameters:

Sample Volume 1.4299 dscm 50.499 dscf

Sample Time 60.0 minutes Isokineticity 100.5 %

* Standard Conditions: Metric: 20 deg C, 101.325 kPa

Imperial: 68 deg F, 29.92 in.Hg

Client: Weir Canada Date: 14-Mar-19 Weir - Surrey, BC 1 - Particulate / Metals Jobsite: Run: 10:47-11:49 Source: Welding Station #19 Run Time: Control Unit (Y) 1 0232 Collection: Gas Analysis (Vol. %): Condensate Collection: Nozzle Diameter (in.) 0.3433 Filter (grams) 0.00005 -10.0 CO2 0.00 Impinger 1 Pitot Factor 0.8349 Washings (grams) 0.00230 Impinger 2 10.0 Baro. Press. (in. Hg) 30.25 Traverse 2 0.00 21.00 Impinger 3 1.0 Static Press. (in. H20) Stack Height (ft) Total (grams) 0.00235 0.0 0.30 Impinger 4 30 Impinger 5 Stack Diameter (in.) 7.00 0.0 Impinger 6 Gel Stack Area (sq.ft.) 0.267 7.0 Minutes Per Reading 0.00 21.00 Gain (grams) 8.0 5.0 Minutes Per Point 5.0 Wall Dry Gas Temperature Stack Traverse / Time Dry Gas Meter Pitot ^P Orifice ^H Temp. Isokin. Inlet Outlet Vacuum Dist. Point (min.) (ft3) (in. H2O) (in. H2O) (oF) (oF) (in. Hg.) (oF) (in.) (%) Traverse 1 0.0 5.0 639.103 58 1.0 100.0 0.15 1.97 58 72 643.020 646.950 58 75 10.0 0.15 1.97 58 2.0 100.6 3 15.0 650.890 0.15 1.97 58 58 75 3.0 100.8 20.0 25.0 0.16 0.18 60 61 60 61 4.0 5.0 100.7 100.9 654.970 2.11 75 75 2.38 6 30.0 663.390 0.16 2.11 62 62 76 6.0 100.4 Traverse 2 0.0 663.390 5.0 667.230 0.14 1.88 64 64 68 1.0 99.9 10.0 671.280 0.15 2.02 65 65 68 2.0 101.6 66 15.0 675.180 0.14 1.90 66 3.0 100.9 66 679.080 0.14 100.8 25.0 2.17 68 683.170 0.16 68 67 5.0 98.7 30.0 687.210 0.15 2.04 68 68 67 6.0 100.7 6 Average: 0.153 2.035 62.9 62.9 2.0 70.9 100.5

APPENDIX 2 ANALYTICAL DATA

#104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Lot ID: 1339597

Mar 26, 2019

Date Received: Mar 20, 2019

Report Number: 2388698

Control Number:

Date Reported:

Report Transmission Cover Page

Bill To: A. Lanfranco & Associates

Project ID: #101, 9488 - 189 Street

Project Name:

Weir

Surrey, BC, Canada Project Location: Surrey, BC

V4N 4W7 LSD: Attn: Missy P.O.:

Sampled By: Proj. Acct. code:

Company:

Contact Con	mpany	Address							
Mark Lanfranco A. I	Lanfranco & Associates	#101, 9488 - 189 Street							
		Surrey, BC V4N 4W7							
		Phone: (604) 881-2582	Fax:	(604) 881-2581					
		Email: mark.lanfranco@alanfranco.com							
Delivery	<u>Format</u>	<u>Deliverables</u>							
Email - Merge Reports	PDF	COC / Test Repor	t						
Email - Multiple Reports By Agı	reement PDF	COA							
Email - Single Report	PDF	COR							

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential. If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited. If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

#104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street

Surrey, BC, Canada

V4N 4W7 Missy

Attn: Sampled By:

Project ID: Project Name:

LSD:

P.O.:

Project Location:

Weir

Surrey, BC

Lot ID: 1339597

Control Number:

Date Received: Mar 20, 2019 Date Reported: Mar 26, 2019

Report Number: 2388698

Proj. Acct. code:

Company:

Reference Number Sample Date Sample Time

1339597-1 Mar 15, 2019 NA

1339597-2 Mar 14, 2019

1339597-3 Mar 15, 2019 NA

NA

Sample Location

Sample Description Metals Blank (Beaker "MC Blk" + 1

Grit Blast - Run #1 (Beaker "MC1" + 1

Rubber Trim - Run #1 (Beaker "MC2" +

1 Bottle) Bottle) Bottle) Matrix Stack Samples Stack Samples Stack Samples

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality Metals						
Aluminum	Strong Acid Extractable	μg	7.8	12	22	0.5
Antimony	Strong Acid Extractable	μg	<1	<1	<1	1.5
Arsenic	Strong Acid Extractable	μg	<0.4	<0.4	<0.4	0.35
Barium	Strong Acid Extractable	μg	0.50	0.62	0.65	0.2
Beryllium	Strong Acid Extractable	μg	<0.01	<0.01	<0.01	0.01
Cadmium	Strong Acid Extractable	μg	< 0.05	< 0.05	< 0.05	0.05
Calcium	Strong Acid Extractable	μg	85	120	170	0.5
Chromium	Strong Acid Extractable	μg	0.66	3.3	1.2	0.1
Cobalt	Strong Acid Extractable	μg	<0.1	0.2	<0.1	0.1
Copper	Strong Acid Extractable	μg	0.1	0.85	0.80	0.1
Iron	Strong Acid Extractable	μg	9.6	160	26	0.2
Lead	Strong Acid Extractable	μg	<0.5	1	2	0.5
Magnesium	Strong Acid Extractable	μg	28	37	82	1
Manganese	Strong Acid Extractable	μg	2.4	2.7	1.5	0.05
Molybdenum	Strong Acid Extractable	μg	0.3	1.1	0.4	0.1
Nickel	Strong Acid Extractable	μg	0.56	2.0	1.5	0.25
Phosphorus	Strong Acid Extractable	μg	170	160	160	0.5
Potassium	Strong Acid Extractable	μg	31	40	55	2
Selenium	Strong Acid Extractable	μg	<0.5	8.0	<0.5	0.5
Silicon	Strong Acid Extractable	μg	52	150	180	0.25
Silver	Strong Acid Extractable	μg	<0.4	<0.4	<0.4	0.4
Sodium	Strong Acid Extractable	μg	300	290	330	5
Sulfur	Strong Acid Extractable	μg	20	34	36	1
Tellurium	Strong Acid Extractable	μg	<4	<4	<4	3.5
Thallium	Strong Acid Extractable	μg	<0.5	<0.5	<0.5	0.5
Tin	Strong Acid Extractable	μg	14	18	20	0.5
Titanium	Strong Acid Extractable	μg	0.3	0.91	0.67	0.1
Vanadium	Strong Acid Extractable	μg	<0.2	<0.2	<0.2	0.2
Zinc	Strong Acid Extractable	μg	6.4	7.5	8.5	0.05
Zirconium	Strong Acid Extractable	μg	<0.1	0.1	<0.1	0.1

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Analytical Report

Bill To: A. Lanfranco & Associates

#101, 9488 - 189 Street

Project Name: Project Location:

Surrey, BC, Canada V4N 4W7

Attn: Missy

Sampled By: Company:

Project ID:

LSD:

P.O.:

Weir

Surrey, BC

Date Reported:

Control Number:

Date Received:

Mar 20, 2019 Mar 26, 2019

Lot ID: 1339597

Report Number: 2388698

Reference Number

Proj. Acct. code:

Sample Date Sample Time

1339597-4 Mar 15, 2019 NA

Sample Location

Sample Description Welding Station #19

- Run #1 (Beaker "MC3" + 1 Bottle)

Stack Samples Matrix

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Air Quality Metals						
Aluminum	Strong Acid Extractable	μg	19			0.5
Antimony	Strong Acid Extractable	μg	<1			1.5
Arsenic	Strong Acid Extractable	μg	0.4			0.35
Barium	Strong Acid Extractable	μg	0.82			0.2
Beryllium	Strong Acid Extractable	μg	<0.01			0.01
Cadmium	Strong Acid Extractable	μg	< 0.05			0.05
Calcium	Strong Acid Extractable	μg	210			0.5
Chromium	Strong Acid Extractable	μg	7.6			0.1
Cobalt	Strong Acid Extractable	μg	<0.1			0.1
Copper	Strong Acid Extractable	μg	0.52			0.1
Iron	Strong Acid Extractable	μg	55			0.2
Lead	Strong Acid Extractable	μg	2			0.5
Magnesium	Strong Acid Extractable	μg	67			1
Manganese	Strong Acid Extractable	μg	4.7			0.05
Molybdenum	Strong Acid Extractable	μg	2.5			0.1
Nickel	Strong Acid Extractable	μg	2.5			0.25
Phosphorus	Strong Acid Extractable	μg	170			0.5
Potassium	Strong Acid Extractable	μg	57			2
Selenium	Strong Acid Extractable	μg	<0.5			0.5
Silicon	Strong Acid Extractable	μg	150			0.25
Silver	Strong Acid Extractable	μg	<0.4			0.4
Sodium	Strong Acid Extractable	μg	340			5
Sulfur	Strong Acid Extractable	μg	82			1
Tellurium	Strong Acid Extractable	μg	<4			3.5
Thallium	Strong Acid Extractable	μg	<0.5			0.5
Tin	Strong Acid Extractable	μg	19			0.5
Titanium	Strong Acid Extractable	μg	1.4			0.1
Vanadium	Strong Acid Extractable	μg	<0.2			0.2
Zinc	Strong Acid Extractable	μg	7.7			0.05
Zirconium	Strong Acid Extractable	μg	0.2			0.1

Approved by:

Mathieu Simoneau

Mathier

#104, 19575-55 A Ave. Surrey, British Columbia V3S 8P8, Canada

T: +1 (604) 514-3322 F: +1 (604) 514-3323 E: Surrey@exova.com W: www.exova.com

Methodology and Notes

Bill To: A. Lanfranco & Associates

Project ID: Weir Lot ID:

1339597

#101, 9488 - 189 Street Surrey, BC, Canada

Project Name: Project Location:

Control Number: Surrey, BC

Mar 20, 2019

V4N 4W7

LSD:

Date Received: Date Reported: Mar 26, 2019

Attn: Missy P.O.:

Report Number: 2388698

Sampled By: Company: Proj. Acct. code:

Method of Analysis				
Method Name	Reference	Method	Date Analysis Started	Location
Metals (Strong Acid Leachable) in air (Surrey)	NIOSH	* Lead in Surface Wipes, 9100	Mar 20, 2019	Exova Surrey
Metals (Strong Acid Leachable) in air (Surrev)	US EPA	 Metals & Trace Elements by ICP-AES, 6010C 	Mar 20, 2019	Exova Surrey

* Reference Method Modified

References

NIOSH National Institute of Occupational Safety and Health **US EPA** US Environmental Protection Agency Test Methods

Please direct any inquiries regarding this report to our Client Services Group or to the Operations Manager at the coordinates indicated at the top left of this page.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Exova

Lot: 1339597 COC

ntrol Number

Billir					Copy of Re	port To:					7	Cop	y of	inv	oice:	
Compa		527.13			Company:						Ma	il inv	oice	to this	\$	
Addres		QA/C	C Report		Address:						a	dres	s for	appr	oval	Ш
	Surrey BC															
	V4N 4W7								Self-	6						
			Report R	esult:	ľ					K E		9 L		Re	port F	Result:
Attenti	on:		Fax		Attention:									, ,,,,	Fax	
Phone	604-881-2582		Mail		Phone:										Mail	
Fax:			Courier		Fax:									Co	ourier	8
Cell:			e-mail	х	Cell:										-mail	
e-mail:	: mark.lanfranco@alanfranco.co	<u>om</u>	e-Service		e-mail:									e-Se	rvice	1_1_
Infan	mation to be included on		RUSH	Dione	o contact th	ontact the laboratory Sample Custody (Please Print)										
			KUSH								ıy (Pi	ease	Prin	t)		
Kepo	ort and Invoice				nfirm rush c			Samp		y:						
	III.				e submitting			Comp	_		_	-	Signat			
Projec					his section, cl					Exova			with th	ne wor	K	
No. 25 A	t Name:				l be attached			ll		ted on	this to					
	t Location: Surrey, BC	111	RUSH		All Analysis	As indic	cated 1	Date:		0		1	nitial:	- 1		of.
PO#:	Location:	1.0	equired on:			or	1	Rece	ved t	oy:	1		199	ample emp.	17	LIDE
	Acct. Code:		ate Requir lignature:	ed:				Wayt	ill #-				-	ate	11-	
	ement ID:		xova Author	zation:			_	Comp	_			-	_	me		
	ial Instructions / Comments		AOVA AUTIOI	zation.	EOPI	AB USE O	MIV			k here	if Fx	ova is	_			
Speci	iai instructions / Comments				Condiftion of			Check here if Exova is required to report results directly to a regulatory						latory I	nody	
Place	a rapart walcample						er-me-ma-ne-	1								Joury
Pleas	e report μg/sample			upon arrival at lab			(Please include contact information)									
								Check here if you are testing POTABLE WATER for HUMAN CONSUMPTION								
									WAI	EK 10	HUN	IAN	JONS	UMP	ION	
								- 8								
								er o								
l								Number of Containers	2							
ł	Please indicate which regulations you a	re required to meet:						žΰ	Metals							
-					I			-	2				10010	aba:		
	Sample Identification	Location			Date/Time Matrix Sampling Sampled Method									\		
			IN C	и м			Wethod	-	1	1	Tele	varii	Sall	pies	Delov	"
-	etals Blank (Beaker "MC BLK" and 1 Bottle)		-		March 15/19			2	Y					-		
2	African in the control of the contro		-		D. Williams P. Williams			-						+		
	rit Blast - Run #1 Metals (Beaker "MC1" + 1 Bottle	3)	-		March 14/19			2	V							
4			-		NA A DRAW S				-					-		
	ubber Trim - Run#1 Metals (Beaker "MC2" + 1 Bo	ettle)			March 15/19			2	Y		-			-		
6		and the second second			A ACCURATE CAMPAGE	-		-			-		-	+		
	elding Station #19- Run #1 Metals (Beaker "MC3"	" + 1 Bottle)			March 15/19			2	Y	-	\vdash			-		
8								-	-0	-				-		
9								H			\vdash					
10			-					-			-			-		
11			-					-		-	+			-		
12								-			-			+		
13	- H							-			-		-	-		
14			-				-							-		
15 NOTE	E. All hazardous comples must be	a laballad asserding the	NA/LIBATE	andala I	ines			I				Da		1	o f	1
INOTE	NOTE: All hazardous samples must be labelled according to WHIMIS guidelines. Page 1 of 1												_{je} _	. or _		

APPENDIX 3 FIELD DATA SHEETS and PROCESS DATA

and the same of th	Management of	
A COLUMN TWO IS NOT THE OWNER.	A COLUMN TO SERVICE AND ASSESSMENT OF THE PERSON NAMED ASSESSM	

CLIENT (ONO	,	<u> </u>	NOZZLE	4 3	DIAMETER, IN	ER, IN.		IMPINGER VIOLENIES I	=	FINAL	TOTAL GAIN
SOURCE /	alter Trim o	Bull	11/1	1		2	2	1	VOLUMES Imp. #1	100		
PARAMETER / RUN NO	No	27	20 KI MULLIN	ORT LENGTH	T 101 101		1: 2		Imp. #2	100	121	7.3
OPERATOR:	がエンナー		, 0)	STACK DIAMETER	TER 4		2/2/2/2	200	mp. #3	000	77	1
CONTROL UNIT	144-16Y	54 1026	S	STACK HEIGHT	II		18: 270	0 . 00	lmp. #5	200		
SOMETRIC PRES	SSURE IN Ha	AH®	7.7	INITIAI I FAK TEST	// // TEST				Imp. #6	0,000		
ASSUMED MOISTURE, Bw	RE, BW / 6/0			FINAL LEAK TEST	EST O.O.		1 20		Downstream Diameters	Diameters		
Clock Time	Dry Gas Meter ft	Pitot AP	Orifice AH		Te	Temperature °F			Pump Vac.	Fyrites	tes	
Point 09:43	733.92	IN. H ₂ O	IN. H ₂ O	Dry Gas Outlet	Stack	Probe	Box	Impinger Exit_	IN. Hg	CO ₂	O ₂	***************************************
	138. CO	100.2	14. K	200	100	240	100	28	70	00	0.72	
160	407.77	1001	1000	1/2	1	186	29/	400	V			
2,	12.35	0511	1.75	63	73				,			
100	746,60	001	16.1	79	62	15/57	120	90	*			
2	12:21	7 7 7	1 2 3	100	1							
/	241187	2.10	00° 7-	53	75	17.7	1200	200	V	0.0	077	
1	752.99	1. 69	3.0%		55					3		
~)3	テージア	1,00%	1/20/21	200	11.6	770	755	202	les			
12	11/20 20	7.78	5001	265 H.F	1/4	Cape /	1000	22	77			
3	14:192	9. F.F	7.07		N							
1	764,37	1,85	3.35	29	1.57	1	100	14	17	000	716	
ζ.	02.1992	05:1	1.70	70	75						100	
3	かかいかん	0001	17.77	7	152	10.67	755	27	B			
the	11/1/2011	000	200		The state of the s	177/	725/	N	77			
0.4	12. 424	146.0	1.90	111	17 17 17 17 17 17 17 17 17 17 17 17 17 1							
	S. J. J. Lake			W los								
2	176 3 V	1070	1977	1		7	142	かった	v ,	2,2	0.10	
3	24,124	14.4	からが	27	イント	P.20	075/	14	7			
74	12.47.	1.40	2,73.	70	73							
7 101 7	1740°00		11.35	7.7	52	1997	1367	0 1/2	K			
	1011/11	2001	100									

TOTAL GAIN		(mL)	2/0	4	1	Char				n'																														
FINAI		(mL)	2/2	1000 1	7		-						O ₂ Vol. %		0.17						011						1100	1						0,1%						
INITIAL		(mL)	2027	100	0	000	 		Jiameters	Downstream Diameters		Fyrites	Vol. %	9	00					\	0.0						90	2						0.0						
IMPINGER		VOLUMES	Imp. #1	lmp. #2	lmp. #3	Imp. #4	lmp. #5	lmp. #6	Upstream [Downstrear		Pump Vac.	IIN. Hg	B		Ź		7			7		K		X		<u> </u>	3	freeze		fry		ì	1		4	3	6		
12	The state of	シグン				20.4							Exit	45	,	65		がの	,		N		0/0		50		20		2	0	V			N 8		28		56		
DIAMETER IN	2	CD CD		,,,	17-41	0.68		11	15	18			DOX	62/)	160		05/			155		154		150		1/1/		120		440			95%		150		755		
DIAME	6	7 7			H20 - 0	XOV			001 00:	100		lemperature 'r	2001	556		797		456		Tropy	444		756		7.55		1.10		720		25%			557		257	7	256		
of Pu		400		этн	STATIC PRESSURE, IN. H2O	METER	SHT		K TEST 🧷	TEST O.		Ctook	Stack	KK	2.7	KR	31	DX.	62	,	5%	67	26		12	XX	N	100	N.	A	67.	SX.		77	52	6%	25	6£	79	
NOZZLE	DOODL	PROBE ~	,	PORT LENGTH	STATIC PRI	STACK DIAI	STACK HEIGHT		INITIAL LEAK TEST	FINAL LEAK TEST		Day	Outlet Outlet	10	81	70	12	79	13			63	63	53	63	10	703	NO		50		<i>U</i>		00	GF	67E	62	19	07/	
	**	1	1 / 1/20	VITINIAN		ę	32	7,4			TIV TO	Online AH	2	115	21.11	7/1	112	1.90	1.75		18	767	1. 20	001	1 20	120	1.81	00	100	ナジノ	04.1	121		1.93	1.93	1.07	1.75	7.89	1.8.1	
	,	7	18081 E	12			1.02	DHO / CE	5		Divers A D	FIGURE AF	101.0	1.44	1.21	7.07	1.5.0	1.47	7, 42	,	1.40	2.40	1.43	143	100	1.46	36	N. C.	14	10/2	67%	6/2		146	940	7	144	. 45	43	•
		144	2019	10	119		Y	V	7.08	, ,	fotor A3	11 12 12	11/6:	. 41	10%	100	150	:541	10.6	,	341	61	18	000			1000	147	1000	0 1/1	080	2 36		076	006	92.0	18	74	64	
		777	12/	11 01	ch 14.				SURE, IN. Hg	E, Bw	Dr. Gas Meter ft	LALY Class I.	611	とその	163	643	695	697	667		101	103.	11/15	104		711	612.	1/17	10/12	1/1/	1071	1771		763	725	101	124,	631.	133.	
*	3000		Α	PARAMETER / RUN No	Mari	OR:	L UNIT		BAROMETRIC PRESSURE, IN. Hg	ASSUMED MOISTURE, BW	Clock Time	CIOCK LIIIR	13:40																										14.14	
	CLIENT	700	SOURCE	PARAME	DATE	OPERATOR	CONTROL UNIT		BAROME	ASSUME		Point.			ζ,	~	2	10	Q			7	gra.	5	7	0	F	2	(20)	2	6	9		_	0	27	*	_	9	_

8. A. Lanfranco and Associates Inc.

Z				Γ		Ī		Γ	П	T					T	T	T	T	Ī	T	Γ							T	T	I		T	T	T	T	T	П		_
TOTAL GAIN	(mľ.)	0%	015	-						ď	<u>* </u>				1	-	+	+	+	-									-	-	1	+	1		lacksquare				
Ĭ 				_		ļ.	_			Ĺ	13				0	16	1	1	1	S.	2	0	0								1				L	_			
FINAL	(mF)	06	01/							Fyrites	O ₂	01/2				17/2		0/6				0///																	
INITIAL	(mL)	100	001.	O	209			ameters	Diameters	FV	CO ₂	00			***	2012		00				00																	_
IMPINGER,	VOLUMES	Imp. #1	Imp. #2	lmp. #3	Imp. #4	lmp. #5	lmp. #6	Upstream Diameters	Downstream Diameters	Pump Vac.	IN. Hg			1				1	,																				
1433	2										Impinger	200	1 6	00		20		200		26)	26																	
R. IN. 0, 3	654.0			03			, tr	, 5	2.2		Box	127		707				12/2	-	15.6		59											1						
DIAM	17-3 Cp			1.01	1,			1/00/	100	Temperature °F	Probe	200		200		7		500	ı	54		55 1										-							-
6.383	7			STATIC PRESSURE, IN. H2O	R X.O			ST 0.00,	100 01	Temi	Stack	1	23		77)	1	7	122	7	7 10	7.7							+									
E Man	- 240A	>	PORT LENGTH	C PRESSU	STACK DIAMETER	STACK HEIGHT		INITIAL LEAK TEST	FINAL LEAK TEST			1	2	\ \frac{1}{2}		1		7	V	13	1 1 1	? ~	7			1		1		1	1			-					
NOZZLE	PROBE		PORT	STATI	STAC	STAC	_	INITIA	FINAL		Dry Gas Outlet	1		N	9		73	10			0	2	0																
	*	700	tIMOLA	3-40		7	7			Orifice AH	IN. H ₂ O		287	17.7	1/	1000	11/4	13. N	200	05/	05%	111	11.04																
		のととな	Ravi			1.023	10./ e	>		Pitot AP	IN. H ₂ O	35/	1,5%	0,4	100	The state of the s	3	14	7.5	14	14/	16	7																
5 4	1	1000	,		Caso	ۍ ≻	ØH∇	.75		-	Τ	77	7 7%	N N	**************************************	少 少	+	2		0	7	72 7		-	1	+	+	+	$\frac{1}{1}$	+	$\frac{1}{1}$	-	<u> </u>	-	-			1	*****
	1	1.64	, "N	61		1-17		0816	0/0	Meter ft	7.103] ,	0	. B	2/2	N.	\$		N	11	0.4	1 1 1	1	- Company											1			į	
	191	11/1/11	1 ,0	1617	,	T		URE, IN. H	1	Dry Gas Meter fr	639	40	149	んし			1	7.09	1	27.3	かえの	683	687																
Walt			PARAMETER / RUN No	11/11/10	Ŕ:	UNIT		BAROMETRIC PRESSURE, IN. Hg	ASSUMED MOISTURE, Bw	Clock Time	7.5:01		181	***	041								1.4.7	1															*****
CLIFNT		SOURCE	RAMET	DATE	OPERATOŔ:	CONTROL UNIT		ROMET	SOMED		Point	-	578			00	+	e silige	1	63	t,	S	9	\dashv	\dashv	+	+	-	+	+	+	-	+	+	-			-	
C		8	P/	△	Ö	ಠ	Ш	BA	¥]	<u> </u>	<u>~</u>		Щ				1	<u></u>	L			Ш											<u>L</u>	<u></u>	<u> </u>	<u></u>			-

A. Lanfranco and Associates Inc.

Mark Lanfranco

From:

Chris Dunn < Chris. Dunn@mail.weir>

Sent:

March 25, 2019 10:56 AM

To:

Mark Lanfranco

Cc:

Ricardo Parodi; Glen Wakelin

Subject:

RE: [EXTERNAL] Production information and equipment specs

Hi Mark,

Here is the info for the testing,

Weld station 19: Welder Raynier, 30" dia pipe 3 passes = 282" of weld sure face WPS STT.FC.03 flux core wire 1/16" 24v 190 IPM wire feed speed

Grit Blast booth: Blaster Craig, 24" reducer x 20" long (x1) Wear cones 37" x 37" x 13" (x12)

Rubber buffing: Buffers Jagjit and Balvir, 32" x 30" pipe reducers Flange x DOL (x2) VN-72 1-3/8"

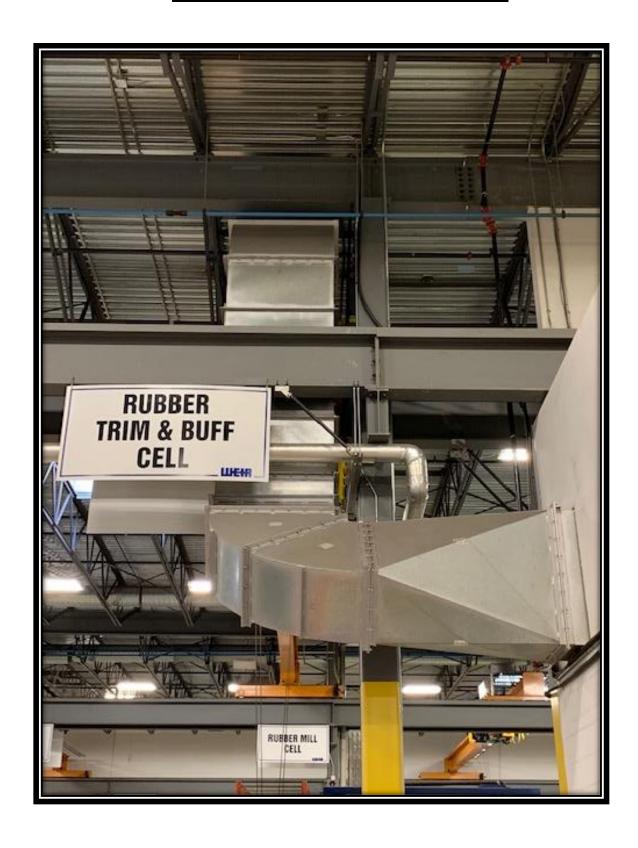
Chris Dunn Maintenance Supervisor

Weir Minerals 18933 34A Ave. Campbell Heights North Surrey, BC V3Z 1A7

T +01 778.303.9962 F +01 778.545.8351 C+01 604 787 7670

<u>chris.dunn@mail.weir</u> weirminerals.com

Twitter | Facebook | YouTube


CONFIDENTIAL:

The information contained in this email (including any attachments) is confidential, subject to copyright and for the use of the intended recipient only. If you are not the intended recipient please delete this message after notifying the sender. Unauthorised retention, alteration or distribution of this email is forbidden and may be actionable.

Attachments are opened at your own risk and you are advised to scan incoming email for viruses before opening any attached files. We give no guarantee that any communication is virus-free and accept no responsibility for virus contamination or other system loss or damage of any kind.

APPENDIX 4 SOURCE PHOTOS

Rubber Buffing Room - Emission Source 07

Grit Blast Booth - Emission Source 08

Welding Station #19 - Emission Source 09

APPENDIX 5 CALIBRATION DATA

A.Lanfranco & Associates inc.

Meter Box Calibration

English Meter Box Units, English K' Factor

Model #: AU 15

07-Jan-19

0028SPC-081915-1 Serial #:

Barometric Pressure: 30.01 (in. Hg) Theoretical Critical Vacuum: 14.16 (in. Hg)

111111111

IMPORTANT For valid test results, the Actual Vacuum should be 1 to 2 in. Hg greater than the Theoretical Critical Vacuum shown above.

IMPORTANT The Critical Orifice Coefficient, K', must be entered in English units, (ft)^3*(deg R)^0.5/((in.Hg)*(min)).

			DRY GA	S METER READIN	NGS	-				-C	RITICAL ORIF	ICE READING	GS-	
dH (in H2O)	Time (min)	Volume Initial (cu ft)	Volume Final (cu ft)	Volume Total (cu ft)	Initial T Inlet (deg F)	emps. Outlet (deg F)	Final Inlet (deg F)	Temps. Outlet (deg F)	Orifice Serial# (number)	K' Orifice Coefficient (see above)	Actual Vacuum (in Hg)	Am Initial (deg F)	nbient Temperat Final (deg F)	ure Average (deg F)
3.50	15.00	475.500	491.040	15.540	67.0	67.0	67.0	67.0	73	0.8185	15.5	67.0	67.0	67.0
1.84	15.00	527.700	538.988	11.288	70.0	70.0	71.0	71.0	63	0.5956	17.5	77.0	79.0	78.0
1.05	15.00	541.300	550.134	8.834	72.0	72.0	72.0	72.0	55	0.4606	19.0	73.0	80.0	76.5
0.61	15.00	551.900	558.647	6.747	72.0	72.0	72.0	72.0	48	0.3560	20.0	78.0	79.0	78.5
0.29	15.00	559.400	563.934	4.534	71.0	71.0	71.0	71.0	40	0.2408	21.0	76.0	82.0	79.0
	S METER			ORIFICE			DRY GA	S METER				ORIFICE		
	S METER			ORIFICE				S METER				ORIFICE		
VOLUME	VOLUME		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL			S METER ON FACTOR Y		CAL	LIBRATION FA			
VOLUME CORRECTED Vm(std)	VOLUME CORRECTED Vm(std)		VOLUME CORRECTED Vcr(std)	VOLUME CORRECTED Vcr(std)	VOLUME NOMINAL Vcr		CALIBRATION Value	ON FACTOR Y Variation		Value	LIBRATION FA dH@ Value	CTOR Variation		Ko (value)
VOLUME CORRECTED	VOLUME CORRECTED		VOLUME CORRECTED	VOLUME CORRECTED	VOLUME NOMINAL		CALIBRATIO	ON FACTOR Y			_IBRATION FA dH@	CTOR		Ko (value) 0.731
VOLUME CORRECTED Vm(std) (cu ft)	VOLUME CORRECTED Vm(std) (liters)		VOLUME CORRECTED Vcr(std) (cu ft)	VOLUME CORRECTED Vcr(std) (liters)	VOLUME NOMINAL Vcr (cu ft)		CALIBRATION Value (number)	ON FACTOR Y Variation (number)		Value (in H2O)	LIBRATION FA dH@ Value (mm H2O)	Variation (in H2O)		(value)
VOLUME CORRECTED Vm(std) (cu ft) 15.744	VOLUME CORRECTED Vm(std) (liters) 445.9		VOLUME CORRECTED Vcr(std) (cu ft) 16.050	VOLUME CORRECTED Vcr(std) (liters) 454.5	VOLUME NOMINAL Vcr (cu ft) 15.978		CALIBRATION Value (number) 1.019	ON FACTOR Y Variation (number) -0.004		Value (in H2O) 1.728	LIBRATION FA dH@ Value (mm H2O) 43.89	Variation (in H2O) 0.046		(value) 0.731
VOLUME CORRECTED Vm(std) (cu ft) 15.744 11.315	VOLUME CORRECTED Vm(std) (liters) 445.9 320.4		VOLUME CORRECTED Vcr(std) (cu ft) 16.050 11.559	VOLUME CORRECTED Vcr(std) (liters) 454.5 327.4	VOLUME NOMINAL Vcr (cu ft) 15.978 11.747		Value (number) 1.019	ON FACTOR Y Variation (number) -0.004 -0.002		Value (in H2O) 1.728 1.740	LIBRATION FA dH@ Value (mm H2O) 43.89 44.19	Variation (in H2O) 0.046 0.058		(value) 0.731 0.728
VOLUME CORRECTED Vm(std) (cu ft) 15.744 11.315 8.813	VOLUME CORRECTED Vm(std) (liters) 445.9 320.4 249.6		VOLUME CORRECTED Vcr(std) (cu ft) 16.050 11.559 8.952	VOLUME CORRECTED Vcr(std) (liters) 454.5 327.4 253.5	VOLUME NOMINAL Vcr (cu ft) 15.978 11.747 9.072		Value (number) 1.019 1.022 1.016	ON FACTOR Y Variation (number) -0.004 -0.002 -0.007		Value (in H2O) 1.728 1.740 1.651	LIBRATION FA dH@ Value (mm H2O) 43.89 44.19	Variation (in H2O) 0.046 0.058 -0.031		(value) 0.731 0.728 0.752
VOLUME CORRECTED Vm(std) (cu ft) 15.744 11.315 8.813 6.724	VOLUME CORRECTED Vm(std) (liters) 445.9 320.4 249.6 190.4		VOLUME CORRECTED Vor(std) (cu ft) 16.050 11.559 8.952 6.906	VOLUME CORRECTED Vcr(std) (liters) 454.5 327.4 253.5 195.6	VOLUME NOMINAL Vor (cu ft) 15.978 11.747 9.072 7.025 4.754	age Y	Value (number) 1.019 1.022 1.016 1.027 1.032	Variation (number) -0.004 -0.002 -0.007 0.004 0.009	ge dH@>	Value (in H2O) 1.728 1.740 1.651 1.611	UBRATION FA dH@ Value (mm H2O) 43.89 44.19 41.93 40.93	Variation (in H2O) 0.046 0.058 -0.031 -0.070		(value) 0.731 0.728 0.752 0.754

т	EMPERATURE CALIBRAT	ION	
Calibration Standard>	Omega Model CL23A S/N:T-2	18768	
Reference Temperature Set-Point (deg F)	Temperature Device Reading (deg F)	Re Variation (degF)	sults Percent of Absolute
32	32	0	0.00%
100	100	0	0.00%
300	300	0	0.00%
500	500	0	0.00%
1000	1000	0	0.00%

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +0.02.
For Orfice Calibration Factor 04/6, the orfice differential pressure in inches of H20 that equates to 0.75 cfm of air 68 F and 29.9 sinches of Hg, acceptable tolerance of individual values from the average is +0.2.
For Temperature Device, the reading must be within 1.5% of certified calibration standard (absolute temperature) to be acceptable.

Date: January 7, 2019 Calibrated by: Scott Ferguson

A. LANFRANCO and ASSOCIATES INC.

ENVIRONMENTAL CONSULTANTS

GLASS NOZZLE DIAMETER CALIBRATION FORM

Calibrated by: Michael Goods Date: Jan 7th 2019

Signature:

/ .	CI
Lela	a
1201	

Nozzle I.D.	d1	d2	d3	difference	average dia.	average area
	(inch)	(inch)	(inch)	(inch)	(inch)	(ft ²)
Α	0.1250	0.1240	0.1245	0.0010	0.1245	0.0000845
G-165	0.1640	0.1655	0.1660	0.0020	0.1652	0.0001488
P-20	0.1855	0.1865	0.1835	0.0030	0.1852	0.0001870
J	0.1880	0.1880	0.1880	0.0000	0.1880	0.0001928
E	0.1880	0.1895	0.1882	0.0015	0.1886	0.0001939
L	0.2112	0.2120	0.2105	0.0015	0.2112	0.0002434
G-215	0.2160	0.2150	0.2130	0.0030	0.2147	0.0002513
Q	0.2190	0.2170	0.2185	0.0020	0.2182	0.0002596
G-222	0.2215	0.2220	0.2215	0.0005	0.2217	0.0002680
G-225	0.2245	0.2250	0.2240	0.0010	0.2245	0.0002749
P-18	0.2375	0.2370	0.2380	0.0010	0.2375	0.0003076
V-07	0.2447	0.2450	0.2445	0.0005	0.2447	0.0003267
G-250	0.2500	0.2505	0.2510	0.0010	0.2505	0.0003422
G-252	0.2525	0.2520	0.2530	0.0010	0.2525	0.0003477
Р	0.2580	0.2570	0.2575	0.0010	0.2575	0.0003616
G-278	0.2775	0.2785	0.2790	0.0015	0.2783	0.0004225
P-2	0.2787	0.2790	0.2785	0.0005	0.2787	0.0004237
G-292	0.2922	0.2920	0.2926	0.0006	0.2923	0.0004659
MV-02	0.3050	0.3040	0.3055	0.0015	0.3048	0.0005068
MV-01	0.3060	0.3065	0.3055	0.0010	0.3060	0.0005107
G-309	0.3095	0.3095	0.3085	0.0010	0.3092	0.0005213
V-06	0.3200	0.3210	0.3210	0.0010	0.3207	0.0005608
G-330	0.3295	0.3300	0.3305	0.0010	0.3300	0.0005940
G-337	0.3380	0.3355	0.3365	0.0025	0.3367	0.0006182
P-27	0.3387	0.3385	0.3390	0.0005	0.3387	0.0006258
G-343	0.3435	0.3430	0.3435	0.0005	0.3433	0.0006429
G-349	0.3490	0.3495	0.3495	0.0005	0.3493	0.0006656
P-9	0.3648	0.3650	0.3645	0.0005	0.3648	0.0007257
G-372	0.3710	0.3730	0.3740	0.0030	0.3727	0.0007575
I	0.3785	0.3785	0.3785	0.0000	0.3785	0.0007814
P-14	0.3910	0.3935	0.3920	0.0025	0.3922	0.0008388
P-17	0.4070	0.4075	0.4065	0.0010	0.4070	0.0009035
С	0.4255	0.4225	0.4235	0.0030	0.4238	0.0009798
G-437	0.4350	0.4345	0.4355	0.0010	0.4350	0.0010321
P-29	0.4680	0.4680	0.4690	0.0010	0.4683	0.0011963
G468	0.4677	0.4670	0.4670	0.0007	0.4672	0.0011907
P-7	0.4965	0.4940	0.4930	0.0035	0.4945	0.0013337
В	0.5015	0.5030	0.5025	0.0015	0.5023	0.0013763
G-540	0.5405	0.5400	0.5405	0.0005	0.5403	0.0015924

Where:

(a) D1, D2, D3 = three different nozzle diameters; each diameter must be measured to within (0.025mm) 0.001 in.

(b) Difference = maximum difference between any two diameters; must be less than or equal to (0.1mm) 0.004 in.

(c) Average = average of D1, D2 and D3

Pitot Tube Calibration

 Date:
 14-Jan-19
 Temp (R): 530

 Pbar (in.Hg):
 29.50
 Dn (in.): 0.25

Pitot ID:	4A-1			
Reference	S-Type	Air	Pitot	Deviation
HT-4A	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.230	0.330	32.0	0.8265	0.0069
0.340	0.470	38.9	0.8420	0.0086
0.500	0.690	47.1	0.8427	0.0093
0.650	0.930	53.8	0.8277	0.0058
0.700	1.000	55.8	0.8283	0.0052
•		Average:	0.8334	0.0072

Pitot ID:	HT-4A			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.130	0.180	24.0	0.8413	0.0039
0.285	0.390	35.6	0.8463	0.0011
0.470	0.650	45.7	0.8418	0.0034
0.670	0.920	54.6	0.8448	0.0004
0.770	1.040	58.5	0.8519	0.0066
		Average:	0.8452	0.0031

Pitot ID:	4A-2			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.145	0.200	25.4	0.8430	0.0034
0.340	0.470	38.9	0.8420	0.0043
0.400	0.550	42.2	0.8443	0.0020
0.550	0.750	49.4	0.8478	0.0015
0.745	1.000	57.5	0.8545	0.0082
		Average:	0.8463	0.0039

Pitot ID:	HT-4B			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.140	0.190	24.9	0.8498	0.0008
0.210	0.285	30.6	0.8498	0.0008
0.300	0.405	36.5	0.8521	0.0014
0.440	0.600	44.2	0.8478	0.0028
0.710	0.955	56.2	0.8536	0.0030
		Average:	0.8506	0.0018

	Pitot ID:	4A-3			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.240	0.340	32.7	0.8318	0.0031
	0.340	0.470	38.9	0.8420	0.0071
	0.460	0.650	45.2	0.8328	0.0021
	0.640	0.890	53.3	0.8395	0.0046
	0.700	1.000	55.8	0.8283	0.0066
,			Average:	0.8349	0.0047

	Pitot ID:	HT-4C			
	Reference	S-Type	Air	Pitot	Deviation
	Pitot	Pitot	Velocity	Coeff.	(absolute)
	(in H2O)	(in H2O)	(ft/s)	Ср	
	0.355	0.470	39.7	0.8604	0.0037
	0.400	0.530	42.2	0.8601	0.0034
	0.470	0.630	45.7	0.8551	0.0016
	0.560	0.750	49.9	0.8555	0.0012
	0.630	0.850	52.9	0.8523	0.0044
		Average:	0.8567	0.0029	

Pitot ID:				
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		0.0	#DIV/0!	#DIV/0!
		Average:	#DIV/0!	#DIV/0!

Pitot ID:	HT-4D			
Reference	S-Type	Air	Pitot	Deviation
Pitot	Pitot	Velocity	Coeff.	(absolute)
(in H2O)	(in H2O)	(ft/s)	Ср	
0.310	0.450	37.1	0.8217	0.0074
0.370	0.525	40.6	0.8311	0.0020
0.420	0.600	43.2	0.8283	0.0008
0.510	0.720	47.6	0.8332	0.0041
0.740	1.050	57.4	0.8311	0.0020
		Average:	0.8291	0.0033

Calibrated by: Jeremy Gibbs Signature: ______ Date: January 14, 2019

^{*} Average absolute deviation must not exceed 0.01.

BAROMETER CALIBRATION FORM						
		Pbar Env Canada		Device (inches of Hg)		Difference
					Elevation	
Device	Cal Date	(kPa)	(inches of Hg)	Reading	Corrected	(Env Can - Elv Corr)
LA	January 17, 2019	99.9	29.51	29.43	29.50	0.00
DS	January 17, 2019	99.9	29.51	29.44	29.51	-0.01
CL	January 17, 2019	99.9	29.51	29.45	29.52	-0.02
ML	January 17, 2019	99.9	29.51	29.42	29.49	0.01
SB	January 17, 2019	99.9	29.51	29.43	29.50	0.00
SH	January 17, 2019	99.9	29.51	29.40	29.47	0.03
MG	January 7, 2019	101.2	29.89	29.80	29.87	0.02
JB	January 17, 2019	99.9	29.51	29.42	29.49	0.01
SF	January 7, 2019	101.2	29.89	29.86	29.93	-0.04
JG	January 17, 2019	99.9	29.51	29.4	29.47	0.03

Calibrated by: Daryl Sampson Signature: Date: January 17	: January 17, 2019
--	--------------------

Performance Specification is

Device Corrected for Elevation must be +/- 0.1 " Hg of ENV CANADA SEA-LEVEL Pbar

Enter Environment canada Pressure from their website for Vancouver (link below) and the reading from your barometer on the ground floor of the office.

http://www.weatheroffice.gc.ca/city/pages/bc-74_metric_e.html

MOUNT ROYAL COLLEGE

Faculty of Continuing Education and Extension

Carter Lanfranco

has successfully completed

Stack Sampling

May 2009

Date

Door

Faculty of Continuing Education and Extension

Shawn Harrington

has met the requirements of

Stack Testing for Pollutants (CHSC 7760)

School of Process, Energy and Natural Resources Chemical Sciences Program

Endorsed by:

Environment Canada

Environnement

British Columbia Ministry of

JUNE 21, 2001

School of Process, Energy and Natural Resources

Marsh Hemekey, Dean